Polymerization of propiolic acid and its derivatives catalysed by MoCI_s

Toshio Masuda, Michio Kawai and Toshinobu Higashimura

Department of Polymer Chemistry, Kyoto University, Kyoto 606, Japan (Received 9 June 7981; revised 8 July /987)

The polymerization of **propiolic acid** by group Vl and VIII transition metal catalysts was investigated. MoCI₅, which was the most active among the catalysts examined, provided poly(propiolic acid) in over 80% yields under favourable conditions. The polymer formed was a water-soluble tawny **powder, and** its molecular weight was low ($\eta_{\sf sp}$ /C 0.04–0.05 dl g $^{-1}$). The polymer structure, $\sf ECH\!=\!C(CO_2H)_{1n}$ was confirmed by the i.r. and 13C n.m.r, spectra and elemental composition. Some derivatives of propiolic acid (methyl propiolate, acetylenedicarboxylic acid, and phenylpropiolic acid) also produced coloured powdery polymers in the presence of MoCl_F-based catalysts.

Keywords Polymerization; propiolic acid; transition metal catalysts; powdery polymers; structure

INTRODUCTION

The polymerizations of propiolic acid $(HC = CCO, H)$ induced by heat, light, and radiation have been attempted $1²$. The polymer yields, however, were as low as $10-30\%$, and the molecular weights of resultant polymers were less than 2000. Further, the elemental compositions of the polymers were appreciably different from the theoretical one, which was attributed to decarboxylation and dehydration of polymers.

Catalytic polymerization of propiolic acid has not been reported so far. To our knowledge, there have been no reports on the polymerization of phenylpropiolic acid $(C_6H_5C \equiv CCO_2H)$, either. Thiese might be associated with the fact that propiolic acids are not polymerized by Ziegler-type catalysts which are effective for the polymerization of acetylenic hydrocarbons.

Catalysts based on MoCl₅ and WCl₆ are capable of polymerizing both aromatic and aliphatic acetylene derivatives^{3,4}. This polymerization proceeds not only in aromatic and halogenated hydrocarbons but also in oxygen-containing solvents such as ethers, esters and ketones⁵. This suggests that propiolic acid, an oxygencontaining acetylenic monomer, can be polymerized by $MoCl₅$ - and $WCl₆$ -based catalysts. Unlike hydrocarbon monomers, propiolic acid will produce a hydrophilic polymer and hence interesting functionalities are expected for the polymer.

In this paper, we report on the polymerization of propiolic acid catalysed by $MoCl₅$. The polymerizations of some derivatives of propiolic acid were also examined.

EXPERIMENTAL

Propiolic acid (Tokyo Chemical Industry Co., purity $>95\%$ was distilled under reduced pressure. Phenylpropiolic acid (Aldrich Chemical Co., purity 97%) was dried under reduced pressure at room temperature over phosphorus pentoxide. Methyl propiolate, acetylenedicarboxylic acid and acetylenedicarboxylic

0032-3861/82/050744-04\$03.00

© 1982 Butterworth & Co (Publishers) Ltd.

744 POLYMER, 1982, Vol 23, May

acid dimethyl ester (Tokyo Chemical Industry Co., purities $>98\%$) were used as received.

Polymerization was carried out under a dry nitrogen atmosphere at 60°C for 24 h in solution unless otherwise stated. In the case where a cocatalyst was used for polymerization, a 1:1 mixture of $MoCl₅$ and a cocatalyst in solution was aged at 60°C for 15 min before use. The polymerization of acid monomers (propiolic acid, acetylenedicarboxylic acid, and phenylpropiolic acid) was terminated by the addition of a small amount of methanol. The polymers formed were isolated by precipitation in a large amount of hexane, and purified by reprecipitation from a tetrahydrofuran solution into a 1:4 mixture of diethyl ether and hexane. However, the polymerization of ester monomers (methyl propiolate and acetylenedicarboxylic acid dimethyl ester) was terminated by pouring the reaction mixture into a large amount of methanol. All the polymers precipitated were filtered off and dried under reduced pressure. Polymer yields were determined by means of gravimetry.

Reduced viscosities, η_{sp}/C , were measured at 30°C in ethanol [poly(propiolic acid) and poly(acetylene-
dicarboxylic acid)], 1,4-dioxane [poly(methyl $[poly(methyl)]$ propiolate)] or butan-2-one [poly(phenylpropiolic acid)] (concn. 1.0 g d^{-1}). I.r. spectra were recorded on a Shimadzu IR27G spectrophotometer. Thermal Shimadzu IR27G spectrophotometer. Thermal gravimetrical analysis was conducted with a Shimadzu $20B$ analyser under nitrogen. $13C$ n.m.r. spectra were observed in $(CD_3)_2SO$ solution $(20\% \text{ w/v})$ on a JNM FX90Q spectrometer.

RESULTS AND DISCUSSION

Polymerization of propiolic acid

Table 1 lists the results for the polymerization of propiolic acid by group VI and VIII transition metal chlorides. $MoCl₅$ polymerized propiolic acid effectively; i.e., the polymer yield reached $\sim 80\%$ when the polymerization was carried out in 1,4-dioxane. However,

Table 1 Polymerization of propiolic acid by transition metal chloride-based catalysts*

No.	Catalyst	Solvent	Yield (%)
1	MoCl ₅	1.4-Dioxane	81
2	$MoCl5 \cdot Ph4Sn$.,	84
3	$MoCl5 \cdot Ph3$ Sb	$^{\prime}$	83
4	WCI₆	$^{\prime}$	0
5	WCI ₆ Ph ₄ Sn	$^{\prime}$	0
6	$WCI_6 \cdot Ph_3Sb$	$^{\prime}$	0
7	RuCl ₃ · 3H ₂ O	Ethanol	11
8	$RhCl_3 \cdot 3H_2O$	$^{\prime}$	12
9	PdCl ₂	$^{\prime}$	36

* Polymerized at 60°C for 24 h; $[M]_0 = 1.0$ mol I^{-1} , [Cat] = $30 \text{ mmol } 1^{-1}$

Table 2 Polymerization of propiolic acid by MoCI₅ in various solvents*

No.	Solvent	Yield (%)	$\frac{\eta_{\mathsf{SD}}/\mathsf{C}^\dagger}{(\mathsf{dl}\,\mathsf{g}^{-1})}$
	1,4-Dioxane	60	0.047
2	Ethyl acetate	34	0.039
3	1.2-Dimethoxyethane	27	0.041
4	Acetic acid	10	0.042
5	Toluene	8	
6	Anisole		
	1.2-Dichloroethane	з	
8	Acetonitrile	з	
9	n-Butyl ether		
10	Butan-2-one		

* Polymerized at 60°C for 24 h; $[M]_0 = 3.0$ mol I^{-1} , [Cat] = 30 mmol I $^{\rm -1}$

[†] Measured in ethanol at 30° C (concn. 1.0 g dl⁻¹)

 WCI_6 was completely ineffective. This finding is interesting as compared with those for other monomers; $WC1_6$ is more active than MoCl₅ in the polymerization of phenylacetylene³, and these catalysts show comparable activities in the polymerization of tert-butylacetylene⁴.

It is known that the addition of small amounts of reducing agents such as Ph_4Sn increases the yields in the WCl_6 -catalysed polymerizations of phenylacetylene⁶, 1phenyl-1-propyne⁷ and diphenylacetylene⁸. Table 1, however, shows that Ph_4Sn and Ph_3Sb hardly affected the yields in both MoCl₅ and WCl₆ catalysed polymerizations. Thus, MoCl₅ exhibits high catalyst activity by itself in the polymerization of propiolic acid.

Group VIII transition metal catalysts are capable of polymerizing not only acetylenic hydrocarbons such as phenylacetylene⁹, but also polar group containing acetylenes like acetylenic alcohols $10,11$. Therefore it is interesting to study the polymerization of propiolic acid by group VIII transition metal catalysts. Polymerization was attempted using $RuCl₃·3H₂O$, $RhCl₃·3H₂O$, and PdCl₂ as catalysts. Ethanol was used as solvent since it was a good solvent for both catalysts and the monomer. As a consequence, polymer yields were 10-40% (see *Table* 1 , Nos. 7-9). It was, however, difficult to remove the catalyst residue completely because even after termination of polymerization group VIII catalyst metals remained coordinated to the conjugated double bonds of polymer formed.

As *Table 2* shows, poly(propiolic acid) was obtained in fair yields in 1,4-dioxane, ethyl acetate, and 1,2 dimethoxyethane with MoCl₅ at 60° C. These solvents seem to satisfy the following requirements: (i) retention of the MoCl₅ activity (inertness to MoCl₅), and (ii) high dissolving ability for poly(propiolic acid). In acetic acid, acetonitrile, and butan-2-one, the polymer yields were not more than 10%, probably because these solvents did not fulfil the former condition. However, the reason that toluene, anisole, 1,2-dichloroethane, and n-butyl ether are not favourable as polymerization solvents seems to be that they do not meet the latter requirement. The reduced viscosity of polymers hardly depended on the kind of solvent.

Figure 1 shows the time dependences of polymer yield and viscosity in the polymerization of propiolic acid. Polymer yield reached $\sim 60\%$ after 1 day and levelled off. This polymerization did not proceed when as much poly(propiolic acid) as in the feed monomer had been added beforehand. Therefore, the limit observed for polymer yield is due to the inhibition of polymerization by the polymer formed. The reduced viscosity of polymer was ~ 0.045 dl g⁻¹ irrespective of conversion.

The polymerization did not occur at 30° C, while the yields at 60" and 90°C were comparable *(Table 3,* Nos. 1- 3). Polymer yield increased with decreasing monomer concentration *(Table 3,* Nos. 2, 4 and 5) and with increasing catalyst concentration (Table *3,* Nos. 2, 6 and 7). Polymer viscosity hardly depended on these polymerization conditions.

The above results on propiolic acid polymerization lead to a conclusion that propiolic acid, an acetylene having a polar functional group, can be polymerized by MoCl₅. Further, the reduced viscosity of ~ 0.045 dl g⁻¹ for the poly(propiolic acid) formed, suggests that the polymer molecular weight is similar to or somewhat greater than the value of 2000 reported in the literature².

Polymerization of derivatives of propiolic acid

The polymerization of some derivatives of propiolic acid was studied *(Table 4).* Methyl propiolate produced a polymer in $\sim 30\%$ yields, which are lower than these $(\sim 80\%)$ for propiolic acid under the same conditions. Acetylenedicarboxylic acid gave a polymer in a low yield with MoCl₅.Ph₄Sn, while acetylenedicarboxylic acid dimethyl ester underwent no polymerization. Thus the acid monomers were more reactive than the corresponding ester monomers, and the monosubstituted

Figure I Time dependences of yield and reduced viscosity for the polymerization of propiolic acid by MoCl₅ in 1,4-dioxane at 60° C; $[M]_0 = 3.0$ mol $[-1]$, [cat] = 30 mmol $[-1]$

No.	Temperature (°C)	$[M]_0$ (mol l $^{-1}$)	$[MOI_5]$ (mmol I^{-1})	Yield (%)	$\eta_\mathsf{SD}/\mathsf{C}^\dagger$ (di g $^{-1})$
	30	3.0	30		
2	60	3.0	30	60	0,047
3	90	3.0	30	60	0.046
4	60	1.0	30	81	0.040
5	60	5.0	30	50	0.045
6	60	3.0	10	35	0.044
	60	3.0	20	46	0.047

Table 3 Effects of temperature, monomer and catalyst concentrations on the polymerization of propiolic **acid***

Polymerized in 1,4-dioxane for 24 h

[†] Measured in ethanol at 30° C (concn. 1.0 g dl⁻¹)

No. Monomer Catalyst \blacksquare Yield (%) \blacksquare \blacksquare \blacksquare \blacksquare 1 degree to the c≡C–CO₂CH₃ degree to the MoCl₅ s and the control of the control of the MoCl₅ s and the control of the cont 2 31 0.063 3 HO₂C-C≡C-CO₂H MoCI_s MoCI_S 0 0 -
4 MoCI_s Ph₄Sn 13 0.026 $\textsf{MoCl}_5 \cdot \textsf{Ph}_4\textsf{Sn}$ 13
MoCl_s 0.0 5 H3CO2C--C-=C-CO2CH3 MoCI 5 0 - $MoCl₅$ \cdot Ph₄Sn

Table 4 Polymerization of derivatives of propiolic acid by MoCI₅ and MoCI₅ · Ph₄Sn*

Polymerized in 1,4-dioxane at 60°C for 24 h; $[M]_0 = 1.0$ mol I^{-1} (Nos. 3, 4:0.050 mol I^{-1}), [Cat] = 30 mmol I^{-1} \dagger Measured in 1,4-dioxane (Nos. 1, 2) or in ethanol (No. 4) at 30°C (concn. 1.0 g dl⁻⁻¹)

Table 5 Polymerization of phenylpropiolic acid by MoCI₅- and WCI6-based **catalysts***

Catalyst	Solvent	Yield (%)	$\frac{\eta_{\mathsf{sp}}/\mathsf{C}^\dagger}{(\mathsf{dl}\,\mathsf{g}^{-1})}$
MoCl ₅	1.4-Dioxane	25	0.040
$M_0Cl_5 \cdot Ph_4Sn$		38	0.038
MoCl ₅ · Bu ₄ Sn	\cdot	43	0.037
$MoCl5 \cdot Ph3Sb$		48	0.037
WCI₆	\cdot	0	
$WCI_6 \cdot Ph_4$ Sn		0	
MoCl _s Ph ₄ Sn	Ethyl acetate	18	0.037
\bullet	Toluene	5	
	1.2-Dichloroethane	10	

* Polymerized at 60°C for 24 h; $[M]_0/[Cat] = 100/3$, $[M]_0 =$

1.0 mol 1^{-1} (No. 8, 0.3; No. 9, 0.5)

 \dagger Measured in butan-2-one at 30 $^{\circ}$ C (concn. 1.0 g dl⁻¹)

monomers than the corresponding disubstituted monomers: $HC \equiv CCO_2H$ > $HC \equiv CCO_2CH_3$ > $HO_2CC \equiv CCO_2H > H_3CO_2CC \equiv CCO_2CH_3.$

Phenylpropiolic acid, which is another disubstituted acetylene derived from propiolic acid, was polymerized in fairly high yields by $MoCl₅$ -based catalysts, so that the polymerization of this monomer was examined in some detail (see *Table 5*). Though MoCl₅ provided poly(phenylpropiolic acid) without a cocatalyst, the use of Ph_4Sn , Bu_4Sn and Ph_3Sb as cocatalysts appreciably enhanced the yield. As in the case of propiolic acid, WCI_6 exhibited no catalytic activity in the absence and presence of Ph_4Sn . 1,4-Dioxane attained the highest yield among the solvents examined. The polymer formed in 1,4 dioxane contained an insoluble fraction (\sim 40%), while those obtained in other solvents were completely soluble in appropriate solvents. Polymer viscosity was about 0.040 dl g^{-1} regardless of the kinds of cocatalyst and solvent.

Properties and structure of polymers

The data for the elemental analysis of poly(propiolic acid) are as follows: *Table 2*, sample No. 1) $(C_3H_2O_2)_n$; calculated: C, 51.42; H, 2.87; O, 45.71; found: C, 50.31; H, 3.87; O, 45.82. The values found do not agree well with the theoretical values, which is attributed to the decarboxylation reaction and moisture absorption of polymer. These values, however, are much better than those for the polymer obtained by thermal polymerization at 200° C (C, 60.35; H, 3.09; O, 36.70)¹. On the other hand, the values for the analysis of poly(methyl propiolate) practically coincided with the theoretical values: (sample from *Table 4*, No. 2) $(C_4H_4O_2)_n$; calculated: C, 57.14; H, 4.80; O, 38.06; found: C, 56.88; H, 4.88; O, 38.23. The absence of free carboxyl groups in the polymer seems responsible for this good agreement.

Poly(propiolic acid) was a tawny powder. Poly(methyl propiolate), poly(acetylenedicarboxylic acid), and poly(phenylpropiolic acid) were greyish white, grey, and yellow powders, respectively. Poly(propiolic acid) and poly(acetylenedicarboxylic acid) were soluble in highly polar solvents such as water and methanol, and insoluble in less polar solvents like benzene and chloroform. In contrast to this, poly(methyl propiolate) was soluble in benzene and chloroform, while insoluble in water and methanol. Poly(phenylpropiolic acid) dissolved in moderately polar solvents such as butan-2-one, dimethylsulphoxide, and ethanol. As described above, however, poly(phenylpropiolic acid) obtained in 1,4 dioxane was partially insoluble in all solvents (\sim 40%).

The polymers having free carboxyl groups [poly(propiolic acid), poly(acetylenedicarboxylic acid), and poly(phenylpropiolic acid)] were infusible up to 300°C probably owing to strong hydrogen bonding. Poly(methyl propiolate) softened at 253°-256°C. Weight loss started as low as at 100°C in the thermogravimetrical analysis of poly(propiolic acid), whereas no weight loss was observed below 220°C for poly(methyl propiolate).

Figure 2 I.r. spectra of polymers from propiolic acid and its derivatives

Figure 2 shows the i.r. spectra of the polymers. Every corresponding monomer had an absorption at 2200-2100 cm^{-1} due to the C = C stretching, which is not observed in the spectra of polymers. The acid polymers show bands at 3500-2400 (OH), \sim 1700 (C=O), \sim 1620 (conjugated $C = C$), 1250–1200 cm⁻¹ (C–O). Besides them, absorptions characteristic of phenyl group (760 and 690 cm^{-1} are observed for poly(phenylpropiolic acid). However, poly(methyl propiolate) shows no band due to the OH stretching. In this way, these spectra qualitatively support the expected polymer structures shown in *Figure* 2.

The $13C$ n.m.r. spectrum of poly(propiolic acid) in (CD₃), SO consisted of the following signals: δ 166.8 $(-CO, H)$, 140.9 $(-CH=)$, 129.2 $[\text{C}(\text{CO}_2) + \text{C}$. This spectrum confirms the structure, $\overline{fCH} = C(\overline{CO}_2H)_{\pi}$.

REFERENCES

- 1 Khutareva, G. V., Krentsel, B. A., Shishkina, M. V. and Davidov, *B. E. Neftekhimiya* 1965, \$, 90
- 2 Davidov, B. E., Krentsel, B. A. and Khutareva, *G. V. J. Polym. Sci.* (C) 1967, 16, 1365
- 3 Masuda, T., Hasegawa, K. and Higashimura, T. *Macromolecules* 1974, 7, 728
- 4 Masuda, T., Okano, Y., Kuwane, Y. and Higashimura, T. *Polym.* J. 1980, 12, 907
- 5 Okano, Y., Masuda, T. and Higashimura, T. *Polym. J.* submitted 6 Masuda, T., Thieu, K.-Q., Sasaki, N. and Higashimura, T.
- *Macromolecules* 1976, 9, 661 7 Sasaki, N., Masuda, T. and Higashimura, T. *Macromolecules*
- 1976, 9, 664
- 8 Masuda, T., Kawai, H., Ohtori, T. and Higashimura, T. *Polym. J.* 1979, 11,813
- 9 Kern, *R. J. J. Polym. Sci. (A-l)* 1969, 7, 621
- Akopyan, L. A., Grigoryan, S. G., Yegurtdzhyan, Sh. T. and Matsoyan, S. G. *Vysokomol. Soedin (A)* 1975, 17, 1072
- 11 Akopyan, L. A., Grigoryan, S. G., Zhamkochyan, G. A. and Matsoyan, S. G. *Vysokomol. Soedin. (A)* 1975, 17, 2517